Ticker

6/recent/ticker-posts

Statistics Module in Python

Statistics Module in Python

Introduction: 

The statistics module in Python provides various functions for mathematical statistics and data analysis. It offers a convenient way to perform statistical calculations on numerical data. Below are some of the important functions available in the statistics module:

  1. Mean Calculation:
    The mean() function calculates the arithmetic mean of a list of numbers.

    python
    import statistics

    data = [2, 4, 6, 8, 10]
    mean_value = statistics.mean(data)
    print("Mean:", mean_value)
  2. Median Calculation:
    The median() function calculates the median of a list of numbers.

    python
    import statistics

    data = [2, 4, 6, 8, 10]
    median_value = statistics.median(data)
    print("Median:", median_value)
  3. Mode Calculation:
    The mode() function calculates the mode(s) of a list of numbers.

    python
    import statistics

    data = [2, 4, 6, 4, 8, 10, 4]
    mode_values = statistics.mode(data)
    print("Mode:", mode_values)
  4. Standard Deviation:
    The stdev() function calculates the standard deviation of a list of numbers.

    python
    import statistics

    data = [2, 4, 6, 8, 10]
    stdev_value = statistics.stdev(data)
    print("Standard Deviation:", stdev_value)
  5. Variance:
    The variance() function calculates the variance of a list of numbers.

    python
    import statistics

    data = [2, 4, 6, 8, 10]
    variance_value = statistics.variance(data)
    print("Variance:", variance_value)
  6. Harmonic Mean:
    The harmonic_mean() function calculates the harmonic mean of a list of numbers.

    python
    import statistics

    data = [2, 4, 6, 8, 10]
    harmonic_mean_value = statistics.harmonic_mean(data)
    print("Harmonic Mean:", harmonic_mean_value)
  7. Quantiles:
    The quantiles() function calculates the specified quantiles of a list of numbers.

    python
    import statistics

    data = [2, 4, 6, 8, 10]
    quantiles_values = statistics.quantiles(data, n=4)
    print("Quantiles:", quantiles_values)

These functions enable Python programmers to perform a wide range of statistical computations efficiently and accurately on datasets.

Post a Comment

0 Comments